GABA Modulates Frequency-Dependent Plasticity in Humans
نویسندگان
چکیده
منابع مشابه
Frequency-dependent glycinergic inhibition modulates plasticity in hippocampus.
Previous studies have demonstrated the presence of functional glycine receptors (GlyRs) in hippocampus. In this work, we examine the baseline activity and activity-dependent modulation of GlyRs in region CA1. We find that strychnine-sensitive GlyRs are open in the resting CA1 pyramidal cell, creating a state of tonic inhibition that "shunts" the magnitude of EPSPs evoked by electrical stimulati...
متن کاملFrequency-Dependent Changes in NMDAR-Dependent Synaptic Plasticity
The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and...
متن کاملA Strain Range Dependent Cyclic Plasticity Model
Hysteresis loop curves are highly important for numerical simulations of materials deformation under cyclic loadings. The models mainly take account of only the tensile half of the stabilized cycle in hysteresis loop for identification of the constants which don’t vary with accumulation of plastic strain and strain range of the hysteresis loop. This approach may be quite erroneous particularly ...
متن کاملDopamine modulates use-dependent plasticity of inhibitory synapses.
The release of the hormones oxytocin (OT) and vasopressin (VP) into the circulation is dictated by the electrical activity of hypothalamic magnocellular neurosecretory cells (MNCs). In the paraventricular nucleus of the hypothalamus (PVN), MNC neuronal activity is exquisitely sensitive to changes in input from inhibitory GABAergic synapses. To explore the hypothesis that efficacy at these synap...
متن کاملEvidence for frequency-dependent cortical plasticity in the human brain.
Frequency-dependent plasticity (FDP) describes adaptation at the synapse in response to stimulation at different frequencies. Its consequence on the structure and function of cortical networks is unknown. We tested whether cortical "resonance," favorable stimulation frequencies at which the sensory cortices respond maximally, influenced the impact of FDP on perception, functional topography, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: iScience
سال: 2020
ISSN: 2589-0042
DOI: 10.1016/j.isci.2020.101657